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Gravity Filtration with Accretion of Slurry at  Constant Rate 

D. E. SMILES 
DIVISION OF ENVIRONMENTAL MECHANICS 

J. H. KNIGHT 
DIVISION OF MATHEMATICS AND STATISTICS 

T. X. T. NGUYEN-HOAN 
DlVISION OF ENVIRONMENTAL MECHANICS 
CSIRO 
CANBERRA CITY, A.C.T. 2601, AUSTRALIA 

Abstract 

The separation of liquid from solid in many industrial effluents may be 
described by a physical theory developed originally to describe one-dimensional 
movement of water in a swelling soil. The theory makes use of measured hy- 
draulic conductivity-liquid content, and liquid content-liquid potential 
relations. Both these functions have been found to be well defined, as required 
for their use in the theory. 

The process of gravity filtration is explored in terms of this theory for vertical 
columns of effluent, to the top of which additional effluent is applied con- 
tinuously at a constant rate, and from the bottom of which the liquid phase 
escapes through a membrane which prevents escape of the solid phase. The 
physics of the process is discussed, and illustrative calculations and experi- 
mental data are presented for one aspect of the process for which a quasi- 
analytical solution is possible. The calculations are simplified using the flu- 
concentration relation of Philip. 

The approach permits reliable calculation of the liquid-solid profile and the 
filtration rate for the process. 
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I76 SMILES, KNIGHT, AND NGUYEN-HOAN 

INTRODUCTION 

If one assumes that the solid particles in a solid-liquid suspension 
do not interact, and that they settle to an incompressible cake during 
filtration, then the separation processes of filtration and sedimentation 
appear well understood. 

For many colloidal systems, however, particle-particle “interaction” 
occurs at  quite high liquid contents and the separation process involves 
significant conceptual problems in filtration as well as sedimentation. 

Smiles (I, 2) has presented a theory that permits prediction of the 
important aspects of constant pressure and constant rate filtration of 
materials in which the hydraulic conductivity-liquid content, K(9) ,  and 
liquid potential-liquid content, Y(9), relations are well-defined. 9 is 
the volume of liquid per unit volume of solid. This approach has been 
tested with bentonite particles (2) and with red-mud produced as an effluent 
by the aluminum industry (3). 

In many situations, however, the volume of effluent produced is so 
great that mechanical filtration procedures are impracticable and separa- 
tion can only be effected by gravity. Smiles (4 )  discussed the energetics of 
sedimentation and self-weight filtration of such slurries and showed that 
drainage enhances the liquid recovery. The effects were demonstrated in 
terms of equilibrium profiles. In this paper we examine the process of 
gravity (or self-weight) filtration for a particulate slurry with well defined 
K(9) and Y(9) relations. In particular, we concern ourselves with the 
case of an initially uniform vertical column of effluent of length Z to 
which further slurry is added at  a constant rate R.  Liquid, but not solid, 
escapes from the bottom through a filter membrane at  a rate Vo(t)  which 
is a function of time t. 

THEORY 

In a porous material in which K(9) and “(9) are well defined, the 
one-dimensional volume flux density of liquid relative to solid, V ,  is 
related to d@/dz, the space gradient of the total liquid potential, by 
Darcy’s law (1, 2), viz., 

a@ v = - -K@)-  
az 

If we define our potentials as work per unit weight of liquid, 
the potential takes convenient dimensions of length (5) and the 

(1) 

then 
total 
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G RAVlTY FILTRATION I77 

potential (D may be written 

where z is the vertical coordinate defined positive downward, y is the 
wet specific gravity of the slurry, P is the normal stress due to any external 
load, and our integration from 00 simply means that we encompass 
all the suspension above the point z. 

The material coordinate, m, defined by 

dm/dz = (1 + 3)-' (3) 

then permits us to write the liquid continuity equation in the form 

and Eqs. (1)-(4) yield the nonlinear diffusion equation 

- as = a --(D'(3)& as - K'(9)) 
at drn ( 5 )  

in which K'(9) = ( yc  - 1)K(3)(1 + 9)-', D'(3) = K'(y, - l)-' dY/d$,  
and yc is the particle specific gravity. 

Slurry, with an initial uniform liquid content 9,, is discharged at 
rate R into a vessel at the bottom of which is a membrane permitting 
free passage of liquid but not solid. We define m = 0 and z = 0 at  this 
outffow membrane. We note that rn is the cumulative volume of solid per 
unit cross section above z = 0. 

We take as our initial condition 

9 = 9,, for0 c m < M ,  t = 0 (6) 

where M is the initial material length of the column of slurry of length 
Z ,  i.e., 

M = (1 + 9 J ' Z  (7) 

If then the liquid escapes to a pool of free liquid at atmospheric pressure 
and z = 0, then the interparticle stress [or the "solids compressive pres- 
sure" (211 in the slurry on the outflow membrane, -Y,(t), at any time 
t ,  is equal to the initial value Y,(O) = y,Z + P, plus a component ynRt 
due to the added slurry, minus that due to the cumulative amount of liquid 
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I78 SMILES, KNIGHT, AND NGUYEN-HOAN 

which has drained from the base, i.e., 

- Y o ( t )  = y,Z + P -I- ynRt -s‘ Vo(t)  dt (8) 
0 

in which yn is the initial wet specific gravity of the slurry. 
This condition may be simplified to 

In the experiments described here, the properties of the bentonite 
used permit two substantial simplifications to the analysis. First, we 
find that D’ %/dm is generally much greater than K’(9): this condition 
allows us to simplify Eq. (5) by neglecting K’(9) so that we now seek a 
solution to the nonlinear diffusion equation 

- as = -[Dy9)g] a 
at am 

Physically, this means that even though the driving force for filtra- 
tion originates in the self-weight of the column (cf. Eq. S), the flux due 
to gravity, K’(9), is insignificant compared with that identified with dY/dm. 

Second, we examine the situation where y,R >> Vo(t). The boundary 
condition (9) then becomes 

with 9 = 
We note that as a consequence of the condition that y,R >> Vo(t), we 

infer that at the upper surface of the slurry 89/am = 0. Our analysis is 
therefore based on the notion of a semi-infinite column. 

It should be noted that neither assumption prejudices our test of the 
basic principles involved in the analysis. 

Our solution of Eq. (10) subject to conditions (6) and (11) is based 
on the concept of the flux-concentration relations, F ( 0 ,  t ) ,  of Philip (6).  
In this relation 0 = (9 - 9,)/(90 - 9,) and 

at m = 0. 

F(O, t )  = V($)/VO 

This equation arises by integrating the continuity equation expressed 
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GRAVITY FILTRATION I 79 

in the form 

($)s = g)t 
using the condition of semi-infinity which implies that V(9,) = 0. 

As Philip (6) points out, both 0 and F ( 0 ,  t )  decrease as m increases, 
and for any t, F ( 0 ,  t )  is a nondecreasing function of 0 such that F(1, t)= 1 
and F(0, t ) = O .  The time dependence of F ( 0 ,  t )  in our problem arises 
in principle because 90(t)  decreases with t. As a result, D’(S0) changes 
to produce variation in the “shape” of F ( 0 ,  t ) .  As we see in Eq. (12), 
however, F ( 0 ,  t )  is the ratio of integral properties of the process, and 
variation in the shape of F ( 0 ,  t )  will be much less than the variation in 

The solution to the problem using this relation of Philip (6) is based 
on the integration of the flux equation (1) and the continuity equation 

The diffusional form of Eq. (1) for the case where Yo >> K’(9,) [and 

D‘(90). 

(13)- 

by implication Vo >> K’(9,) > K’(9)] is 

as v = -D‘(9)- am 

If we substitute F ( 0 ,  t )  in this equation and integrate, we obtain 
rs 

Furthermore, if we substitute for m from Eq. (15) in the integrated form 
of Eq. (13), we obtain 

&0(t)  /: Vo(t)  dt = m d9 (16) 
ss. 

which equates the cumulative flux at the boundary to the change in liquid 
content in the column. Integrating by parts, we then obtain 

Vo(t) s’ Vo(t)  dt = - 5” (9 - 9,)[D’(9)/F(O, t ) ]  d9 (17) 
0 . 90(t)  

If we define the cumulative outflow I ( t )  by 

I ( t )  = I t  Vo(t) dt 
0 
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I80 SMILES, KNIGHT, AND NGUYEN-HOAN 

Eq. (17) takes the more useful form 

Integration of Eq. (1 8) using Eq. (1 1) then yields 

@IZ = - 2 r " ' )  (r(') (9 - 9,)[Dr(9)/F(0, t ) ]  d9 
Y!Yo(t=O) 9, 

Were F ( 0 ,  t )  known precisely, then the set of Eqs. (1 l), (15), and (19) 
would permit calculation of all aspects of the dewatering process. Un- 
fortunately, F ( 0 ,  t )  is not, in general, known a puiori; as we demonstrate 
below, however, it is sufficiently robust a function that we may often 
guess a form which permits predictive use of Eqs. (15) and (19) with 
acceptable errors. 

In our experiments we test that data are consistent with Eqs. (1 5) and 
(19) by graphing 9(V,rn) and ynR12 [y,Rt = Y(t) ]  for a series of experi- 
ments in which R is varied. This consistency confirms that the diffusion 
model (Eq. 10) is valid and that the assumptions concerning the initial 
and boundary conditions are justified. 

In addition, we investigate the predictive role of Eqs. (15) and (19) 
by calculating 9( V,m) and ynRZ2 (y,Rt) using D'(9) and "(9) data (obtained 
independently) together with a physically based estimate of F ( 0 ,  t ) .  

Estimation of F ( 0 ,  t )  

For the case of constant pressure filtration there exists (7) a rapidly 
converging iterative procedure for accurate calculation of F ( 0 )  [note 
that since 9, is constant in this case, there is no t-dependence in F ( 0 ,  t ) ] .  
N o  such scheme appears to exist for constant rate filtration (2) or for the 
problem discussed here. Any method for estimating the correct F ( 0 ,  t )  
relation must therefore be justified experimentally for each particular 
situation. 

In our case the choice of F ( 0 ,  t )  depends on comparison between 
constant-pressure and constant-rate filtration : in the former process 
Y o  and 9, are constant and V,  decreases as t-l'' ( I ) ;  in the latter process, 
Vo is constant, IdY,/dt I increases with t ,  and 9, decreases. Experimentally, 
however, we find that the same F(O) relation may be used to calculate 
profiles and filtration rates for both processes. In addition, the possibility 
that F ( 0 ,  t )  is time-dependent in the latter process appears not to be 
important, and from here on we write F ( 0 ) .  

Now for our specific case dY',/dt is constant, so our process is in a 
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G RAVlTY FILTRATION 181 

sense intermediate between the behavior of these other two. We therefore 
assume (at least for bentonite and the conditions of our experiments) that 
we may use, without significant error, the F ( 0 )  relation strictly appropriate 
to the case of constant pressure filtration. As a result we can use the 
appropriate analog of the Philip and Knight (7) iterative procedure to 
determine a sufficiently good approximation to the correct F ( 0 ) .  

Iterative Solution of Eq. (1) 

As we point out above, the scheme is analogous to that of Philip and 
Knight (7) for the constant concentration boundary condition. The 
convergence of the scheme is discussed in that paper. 

Briefly, we choose a physically realistic F ( 0 )  function, F,(O), and 
using D’(9) we calculate 9,(Vom) from Eq. (15). This profile yields a 
second estimate of F ( 0 ) ,  F z ( 0 ) ,  using the equation 

F z ( 0 )  is then used to calculate 9,(V0m). The process is repeated until 
successive estimates of F( 0) differ by some arbitrarily small amount. 

E X  PE RI M E N  TAL 

“Western bentonite” supplied by the National Lead Co., Houston, 
Texas was used in all experiments. The clay was mixed with an appropriate 
weight of distilled water in approximately 4 liter volumes, and aliquots 
were taken as required. 

Determination of D’(9) 

The method described in Refs. 8 and 9 based on that of Matano (10) 
was used to determine D‘(9). A vertical column of clay was subjected to a 
constant pressure of 14.55 m of water, and water was permitted to escape 
through a 0.45-pm membrane at  its base to atmospheric pressure. At a 
particular elapsed time the pressure was released, the column was cut into 
short sections, and the liquid content of each was determined by oven 
drying at 105°C. The experiment was repeated at the same pressure for 
five different elapsed times. The results were plotted as $(A), where 1 = 
mt - ‘ I 2 .  ! I1 ($ )  was calculated using the equation 

D’(9) = -(d1/d9) ( 4 2 )  d9 (21) s:. 
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I 82 SMILES, KNIGHT, AND NGUYEN-HOAN 

Figure 1 shows 9(1) for these experiments, Fig. 2 shows the correspond- 
ing derived F ( 0 )  curve, and Fig. 3 shows the derived D'(9) data. 

Determination of "(9) 

The "'(9) relation for this sample of bentonite, shown in Fig. 4, was 
determined using the method described in Ref. 4. 

Filtration Experiments 

The experiments were designed to realize conditions ( 6 )  and (1 1). 
A uniform column of clay was placed in a sectioned stainless steel 

cylinder, 3.82 x lo-' m internal diameter, mounted on a screen support- 
ing a 0.45-pm Gelman membrane. The membrane permits easy escape of 
the water to a pool at atmospheric pressure, but prevents the escape of the 
clay particles. The cumulative outflow, I ,  was measured using a calibrated 
capillary tube, the cross-sectional area of which varied by less than + 2  %. 

The clay was loaded hydraulically using mineral oil, the pressure of 
which was increased by raising a mercury reservoir at  a constant rate. 

The equipment is shown diagrammatically in Fig. 5. 
Each experiment was terminated when an imposed pressure (y,Rt) of 

6.1 m water was attained. The column was then sectioned and the liquid 
content profile determined by oven drying at  105°C. 

Table 1 summarizes the salient features of the experimental sequence. 
All experiments were performed in a room held at 21 ? 1 "C, and care 

was taken to minimize evaporation from the column during the experi- 
ment and during sectioning. 

Figure 6(a) shows 9( Vom) obtained from these experiments, while Fig. 7 
shows the cumulative outflow I in the form (y,R)"'I vs ynRt for each 
experiment. 

DISC USSlO N 

Determination of D'(9) 

The data from the five constant pressure filtration experiments shown 
in Fig. 1 reveal that $(A) is unique despite the different times of sampling. 
We conclude that the process can be examined in terms of the diffusion 
model represented by Eq. (10). By implication, both "(9) and D'(9) 
are well defined; we therefore proceed to use these data to calculate 
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34 
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10 

6 
0 1 2 3 4 

d A  (m&)  

FIG. 1. Liquid content, 9, vs reduced space, L = rnt-’ /* ,  for five filtration 
experiments in which a constant pressure of 14.55 m of water was imposed. 
The experiments were terminated at the times (in hours, h) shown in the figure. 
The smooth curve was calculated using Fig. 3 and F = O(2 - 0) as explained 

in the text. 
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1.0 

08 

06 

0 4  

02 

0 

0 02 04 06 08 1.0 

e 
FIG. 2. F ( 0 )  relations for the five experiments shown in Fig. 1, together with 

F = O(2 - 0). The symbols correspond to those in Fig. 1. 
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I I 1 I I I 

o 40 h 
0 24 h 

7 h  

1 I I I I I 

6 10 14 18 22 26 30 34 

FIG. 3. D'(9) data derived from smooth curves drawn through the individual 
experimental data sets of Fig. 1. The dashed line is the arithmetic mean used 

for predictive calculation. 
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FIG. 4. Y(8) relation for the bentonite used in these experiments. 

constant rate 

Sectioned stainless 
steal pressure cell 

FIG. 5.  Diagram of the equipment used to perform constant loading rate 
experiments. 
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GRAVITY FILTRATION I 87 

TABLE 1 
Summary of Experimental Conditions Imposed during 

Constant Loading Rate Experiments 

Initial liquid Loading rate, 
content, 9. Y ~ R  Sampling time 

Symbol“ m3/m3 = 1 (misec) (sec) 

0 32.97 5.7 x 10-5 1.068 x lo5 
0 33.00 5.9 x 10-5 1.051 X lo5 
A 32.87 9.6 x 10-5 6.318 x lo4 
A 32.85 9.6 x 10-5 6.360 X lo4 
0 32.85 3.4 x 10-4 1.785 X lo4 
H 32.76 3.4 x 10-4 1.788 x lo4 
0 32.89 9.03 x 10-4 6.780 x lo3 

”Corresponds to symbols used on Figs. 6(a) and 7. 

D’(9). It is useful, however, to obtain an estimate of the scatter in both 
D’(9) and F(0),  so rather than determine these functions for the average 
of five experiments, we determine them for the smooth curve drawn 
through each set of data. D’(9) curves are shown in Fig. 2, and F ( 0 )  
curves, calculated using the equation (Ref. 6)  

are shown in Fig. 3. Comparison of Figs. 2 and 3 reveals that the scatter 
in D’(9) is about k 12% with a maximum at the limits of 9 of about 
k 40 %, and therefore much greater than the maximum of about & 1.5 % 
in F(O). 

This difference is to be expected since F(O) is a ratio of integral pro- 
perties of the solution while D’(9) involves the differentiation of ex- 
perimental data. The observation has the important consequence that, 
in general, error in the use of Eqs. (15) and (19) will be dominated by 
the scatter in D’(9) rather than by the scatter in F ( 0 ) ,  and the estimation 
of F(O) for other processes is by implication less critical. 

For example, if we calculate 9(1) using the “average” D’(9) of Fig. 2 
and assert from experience that F = 0(2  - 0), then we obtain the smooth 
curve in Fig. 1. The prediction is clearly excellent. Note that F ( 0 )  = 
0(2 - 0 )  is exact for the profile given by 

9,-9 2.-1 
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30 

25 

& 

20 

15 

0 -  A . 
0 

10 

b 

30- 

25 - 

2 0 -  

F=l F = 8  
Initialestimate A . 
2nd " o n  

3rd .- * o  

lo I I I I I 

0 02 04 0.6 08 1.0 1.2 

10"' v,m ( m2 s-' 

FIG. 6.  (a) Liquid content, 9, vs reduced space, Vom, data for Experiments 1-6 
identified in Table 1.  The loading rates are identified in the figure. (b) 8(Vom) 
data calculated using Fig. 3 and Eq. (15). These data demonstrate the rapidity 
of convergence of the iterative scheme for the two worst guesses of F ( 0 ) .  
The smooth curves present the limits of the experimental data shown in Fig. 6b. 
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i I I 

0 2 4 6 a 

FIG. 7. Reduced cumulative outflow, (y,R)l/ZZ, vs reduced time, ynRt, data 
obtained for the experiments shown in Table 1. The dashed line was predicted 
using Fig. 3, Fig. 4, Eq. (19), and the “correct” F(Q) inferred from Fig. 6b. 
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190 SMILES, KNIGHT, AND NGUYEN-HOAN 

Constant Loading Rate Experiments 

Referring now to Figs. 6 and 7, we observe that the experimental 
data are reduced to unique curves as required by Eqs. (15) and (19) 
despite the great variation of (y,R) between the experimental sets shown 
in Table 1 .  The figures therefore confirm that the assumptions leading 
to the diffusion equation (10) are valid and that the boundary condition, 
Eq. (1 l), is realized. 

We now examine our supposition that F ( 0 )  appropriate to the constant 
concentration boundary condition will permit acceptable accuracy in 
predictive use of Eqs. (15) and (19). In order to demonstrate the iterative 
procedure in this calculation, we have consciously made the worst possible 
upper and lower guesses for F ( 0 ) ,  viz., F = 1 and F = 0 (see Ref. 6 
for more detail). The initial and two subsequent estimates of 9(Vorn) for 
each initial F(O) are shown in Fig. 6(b) together with the dashed limits 
to the experimental data of Fig. 6(a). 

The improvement is rapid and the prediction good, considering the 
scatter in D'(9). We hasten to reiterate, however, that the F ( 0 )  we have 
discussed in this way is the one appropriate to the constant concentration 
boundary condition and therefore only an estimate for our experimental 
conditions. The excellence of the estimation would have to be established 
for other materials, but as we show, the procedure is direct and relatively 
simple. 

The predictive power of Eq. (19) is demonstrated by the dashed line 
in Fig. 7. Again we use the D'(9) and "(9) data of Figs. 3 and 4, but we 
use the "ultimate" F ( 0 )  relation involved in Fig. 6(b). Again the prediction 
is excellent. 

We conclude that for the materials used in these experiments the 
approach provides a precise method for predicting the features of this 
type of filtration. 

Dimensional Observations 

It is evident that y,R may be eliminated explicitly from Eqs. (6), (lo), 
and (11) by using the reduced coordinates T = y,Rt and X = (y,R)'"rn. 
9(X, T )  is thus a universal function describing the evolution of the family 
of profiles with the same initial liquid content, 9,. 

We may therefore immediately infer the evolution of liquid content 
profiles for any value of (y,R) [>> V,] using experimental data for one 
particular value of y,R. 
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Conversion to “Real” Space 

The calculation of the liquid content profile is most readily performed, 
as we show, in Lagrangian space. The recalculation to “physical space” 
is straightforward since we recall from Eq. (3) that 

[I  + 9(m, t ) ]  dm 

The Solution to Eq. (10) Subject to Conditions (6) and (9 )  

In this case Vo(t)  is of the same order of magnitude and perhaps greater 
than y,R. The situation will arise in bentonite if Z is great compared with 
Rt. Equation ( 1  5 )  again yields the liquid and solid profiles, but appropriate 
values of g0(t> must be obtained by solving numerically the equation 

3, 

S o ( t )  
r+) (2) = y,R - I - ’ ( t )  (9 - 9,)[Df(9)/F(@, t ) ]  d9 (23) 

In the particular case where Vo( t )  = y,R, we have dYo/dt = 0. In  this 
situation the interparticle stress at  m = 0 is constant, and the process is 
one of constant pressure filtration. 

In fact, the conductivity K’(9) of bentonite is so small that even in 
the extreme situation, where y,R = 0, the process may be treated practi- 
cally as a constant pressure problem. 

The Effect of Hysteresis 

Preliminary investigation indicates that for dispersed colloidal sus- 
pensions, hysteresis in “(9) is unimportant (11). The analysis fails, 
however, for those materials for which Y(9) is not well defined. In general 
this situation would arise where ynR < Jb Vo(t)  dt/t.  

CONCLUSION 

We conclude that for materials where Y(9) and K(9) are well defined, 
various aspects of gravity filtration with a constant accretion rate of 
slurry may be predicted using a diffusion analysis based on Darcy’s law. 

SYMBOLS 

K(9) hydraulic conductivity (mjsec) 
9 volumetric liquid content per unit volume of solid 
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initial volumetric liquid content per unit volume of solid 
volumetric liquid content per unit volume of solid at x = 0 
liquid potential (m liquid) 
initial depth of slurry (m) 
rate of addition of slurry (m/sec) 
filtration rate (mjsec) 
time (sec) 
volume flux of liquid relative to the solid (mjsec) 
total liquid potential (m liquid) 
space coordinate (m) 
wet specific gravity of slurry 
external load (m) 
material coordinate (m) 
diffusivity in material coordinates (m2/sec) 
hydraulic conductivity in material coordinates (misec) 
particle specific gravity 
initial material depth of slurry (m) 
cumulate volume of filtrate (m) 
flux-concentration relation 
(9 - S")/@O - 9") 
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